

Engrais ou toxine? Le mystère des alcaloides face aux plantes

Présenté par: Adam Dupéré

Problématique

Le **café** est l'une des boissons les plus consommées.

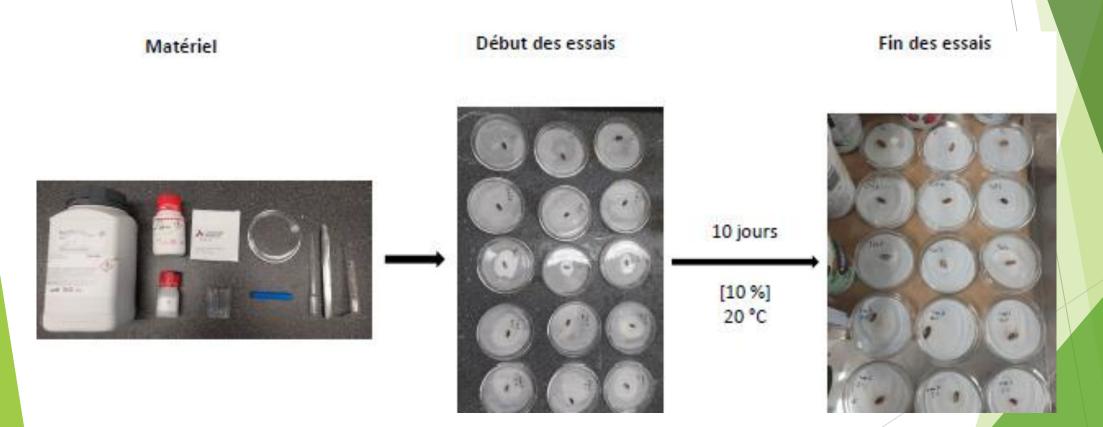
~15M de tonnes/an de marc de café sont générées.[1]

Valorisation potentielle → Utilisation du marc comme engrais organique.

 Effet réel de la caféine et ses produits de dégradation sur le développement des plantes → peu de recherche.

1921: Exploration de ce sujet, mais de façon rudimentaire. Étude de la caféine et ses produits de dégradation sans analyses approfondies.

Théorie

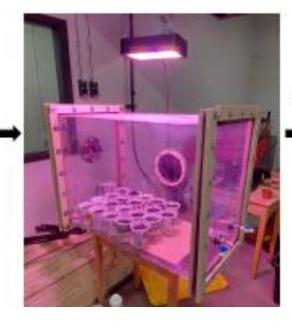

- Qu'est-ce qu'un alcaloïde?
 - ► Composé azoté d'origine naturelle
 - Activité biologique élevée (souvent toxique à certaines doses)
 - Majoritairement extrait des plantes à fleurs
- Rôle: Mécanisme de défense contre les herbivores et les pathogènes.
- Localisation: Stockés dans divers tissus végétaux
- **Exemples connus:** Caféine, nicotine, morphine

Objectifs

- Évaluer l'effet de trois alcaloïdes issus d'un même mécanisme de dégradation — la caféine, la théobromine, et xanthine — sur le développement du haricot (*Phaseolus vulgaris*).
 - ▶ Analyser l'impact de chaque composé sur la germination et la croissance.
 - ► Identifier l'alcaloïde ayant l'influence le plus marqué sur les paramètres mesurés.
 - ► Comparer les résultats obtenus aux données historiques de 1921 pour en évaluer la récurrence des effets.

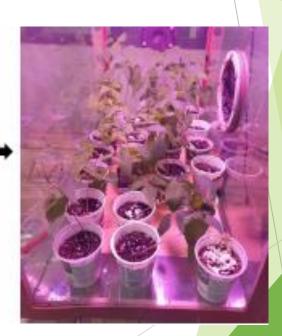
Méthodologie

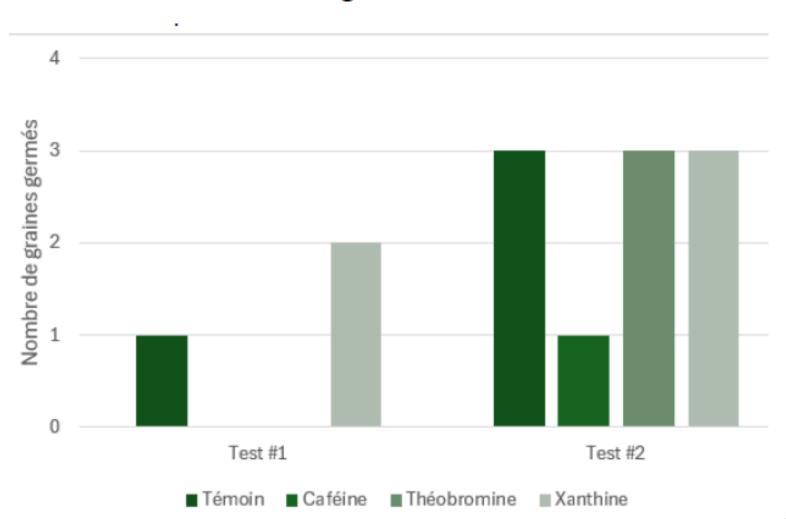
Germination



Méthodologie

Croissance


Matériel Début des essais Fin des essais


3 semaines

[20 %] H%: 30 % pH: 7,8 20 °C

Résultats

Essais de germination

Résultats

Essais de croissance

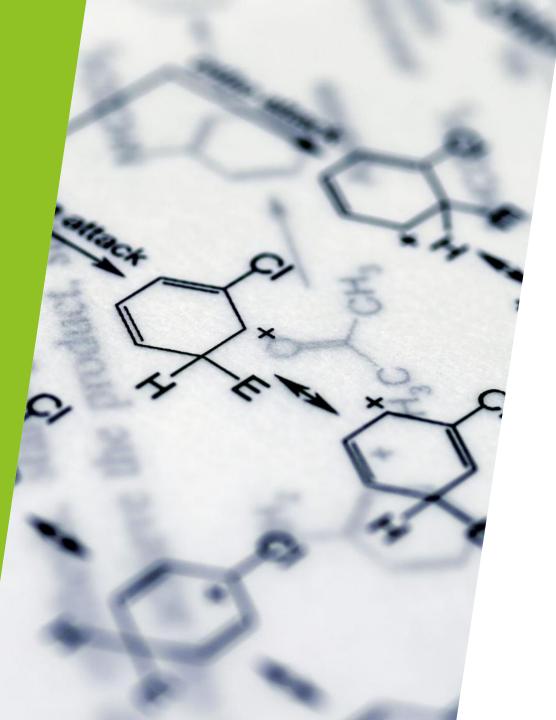
Caféine	Théobromine	Xanthine	Témoin
Assèchement des feuilles. Taches sur	Feuilles deviennent beaucoup plus foncé.	Feuilles deviennent plus foncé.	Croissance régulière des plants.
les feuilles de couleur gris/vert.	Couleur ^[2] : 3/4 dark olive green	Couleur ^[2] : 4/4 olive green	Couleur ^[2] : 5/4 light olive green

Analyse

Germination

- ► **Témoin:** Germination complète observée. Germes sains, de couleur blanche.
- Xanthine: Stimule la germination. Aucune toxicité apparente à la concentration testée.
- Théobromine: Germination amorcée, mais rapidement bloquée
 - → la dose phytotoxique semble atteinte.
- Caféine: Toxicité élevée. Faible taux de germination et arrêt précoce du développement des graines germées.

Analyse


Croissance

- Témoin: Développement normal. Feuilles saines, de couleur verte.
- Xanthine: Feuilles légèrement plus foncées. Toxique pour les jeunes plants au développement peu avancé.
- ► **Théobromine:** Feuillage nettement plus foncé. Toxicité marquée chez les plants peu développés.
- ▶ Caféine: Forte toxicité à tous les stades. Apparition de taches foliaires, suivie d'un dessèchement, puis de la mort des plants.

Analyse

Limites et pistes d'amélioration

- Variation du développement initial des haricots.
 - Définir une référence de croissance standardisée.
- Saccharification inadaptée: son application a nui au développement des plants.
 - ▶ À reformuler ou à exclure dans les essais futurs.
- Nombre de réplicas insuffisant.
 - Minimum de 10 réplicas/condition pour renforcer la validité statistique d'essais biologiques.
- Contamination fongique observée dans certains pétris.
 - Stérilisation du matériel.

Conclusion

- Les alcaloïdes issus de la dégradation de la caféine ont des effets différenciés sur le développement du haricot
 - La xanthine et la théobromine semblent favoriser la germination ([10%]) et la croissance ([20%]), tandis que la caféine présente une toxicité marquée.
- Meilleure compréhension des effets des alcaloïdes du marc de café sur les plantes → ouvrent la voie à des utilisations agricoles.

Remerciment

▶ Je tiens à remercier Francesco Barletta (professeur, CMEC) et Jenny Lapierre (chimiste, Serex) pour leur accompagnement scientifique, ainsi que leur soutien technique et analytique tout au long de ce projet.

Référence

- ► [1]«Le café favorise-t-il la croissance des plantes? Ça depend», dans Scientifique en chef du Québec, 15 septembre 2023,https://www.scientifiqueen-chef.gouv.qc.ca/impact-rencherche/le-cafe-favorise-t-il-la-croissance-desplantes-ca-depend/ (page consultée le 14 avril 2025).
- ▶ [2]Munsell Color. (2009). *Munsell Soil Color Charts*. Grand Rapids, MI: Munsell Color, X-Rite.

Questions?