

DÉTECTION ASSISTÉE DE LA MALADIE D'ALZHEIMER PAR

RÉSEAUX DE NEURONES CONVOLUTIONNELS

Ludovic Laflamme (étudiant) & Yacine Yaddaden

Département de mathématiques, informatique et génie, Université du Québec à Rimouski

Problématique

- La maladie d'Alzheimer est une pathologie neurodégénérative progressive, dont la détection précoce est essentielle pour maximiser les bénéfices thérapeutiques.
- Les données IRM cérébrales sont volumineuses et complexes, nécessitant une préparation rigoureuse pour permettre l'application efficace de l'intelligence artificielle.
- Cette étude vise à franchir l'étape suivante : entraîner, évaluer et comparer plusieurs architectures de réseaux de neurones convolutifs pour le diagnostic automatisé précoce de la maladie.

Objectifs

Développer et comparer des modèles de classification supervisée pour détecter la maladie d'Alzheimer à partir d'images IRM standardisées.

Plus précisément :

- Former plusieurs architectures de réseaux CNN: ResNet, MobileNetV2, EfficientNet, DenseNet, InceptionV3, Xception, VGG16.
- Évaluer les performances sur un ensemble de test séparé.
- Générer des tableaux de classement pour comparer objectivement les résultats obtenus.

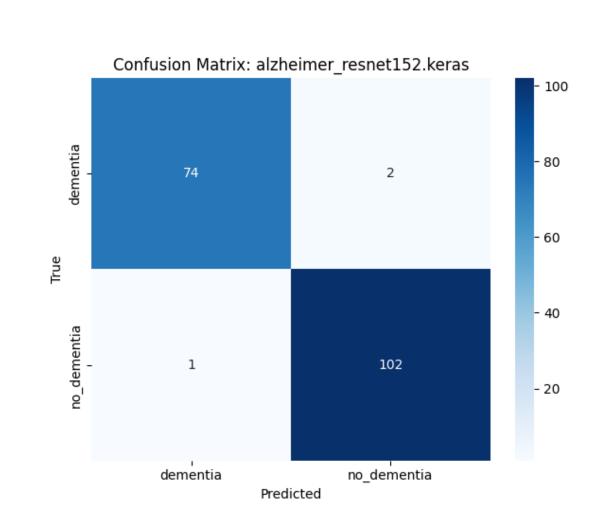
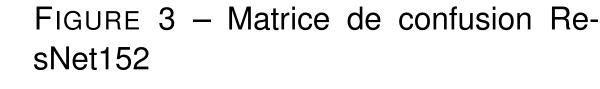




FIGURE 1 – Non-démence

FIGURE 2 – Démence avancée

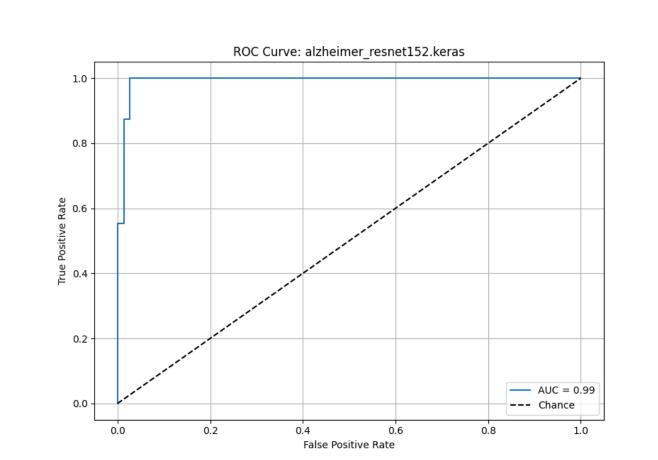


FIGURE 4 – Courbe d'efficacité du récepteur sommaire (ROC) ResNet152

Méthodologie

- Préparation des images IRM avec des techniques de normalisation, de redimensionnement (192x192 ou 299x299 selon le modèle) et de standardisation d'intensité.
- Séparation des données en ensembles d'entraînement, de validation et de test (70%-15%-15%).
- Entraînement de plusieurs CNN pré-entraînés sur ImageNet, adaptés pour la classification binaire (démence vs non-démence).
- Stratégie de fine-tuning :
- Congélation initiale de la base du modèle (transfer learning).
- Dégel progressif des dernières couches pour optimiser les performances.
- Évaluation sur l'ensemble de test et génération d'un classement basé sur la précision, le rappel et le score F1 (moyenne harmonique de précision).

Base de données

La base de données utilisée pour cette étude est OASIS-II (Open Access Series of Imaging Studies II). Elle contient des données IRM longitudinales sur des patients décrits ci-dessous [1].

Catégorie	Sujets
Aucune démence tout au long de l'étude	72
Alzheimer léger à modéré initialement	51
Total des échantillons	123
Tranche d'âge (années)	60 - 96

Résultats

- Résultat clé : ResNet152 a obtenu une précision de 98.32% sur l'ensemble de test, dépassant toutes les autres architectures testées.
- VGG16 et Xception suivent avec respectivement 97.77% et 94.97% de précision.
- L'efficacité de ResNet confirme la pertinence d'architectures très profondes pour la détection précoce d'anomalies cérébrales.

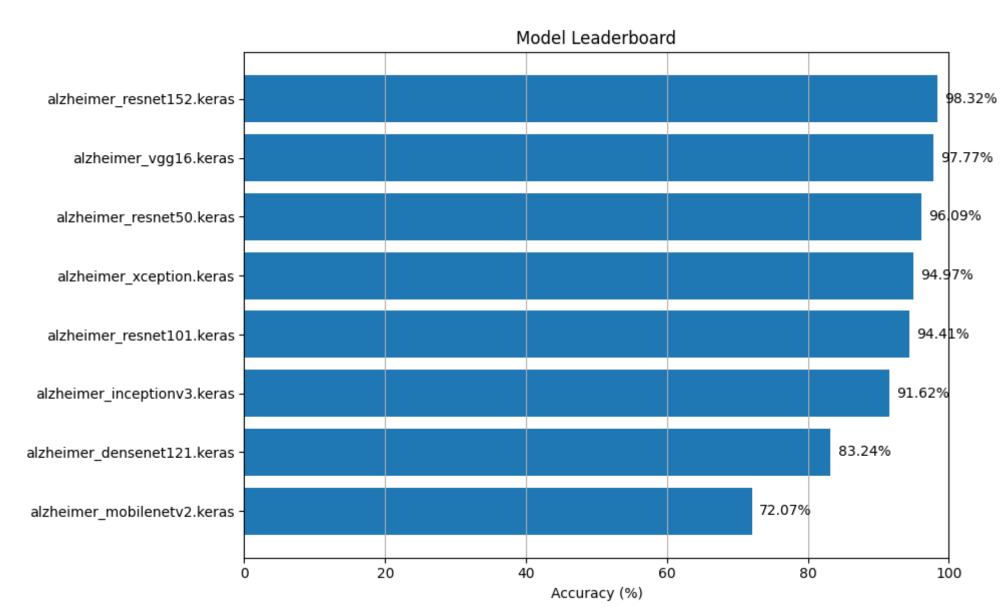


FIGURE 5 – Classement des modèles selon la précision

Conclusion

- La classification automatisée des IRM cérébrales par réseaux convolutifs s'avère extrêmement prometteuse pour soutenir le diagnostic médical.
- ResNet152 constitue la meilleure approche testée à ce jour.
- Perspectives :
- Affiner davantage les modèles avec des ensembles de données augmentées
- Explorer d'autres architectures (Vision Transformers).
- Ajouter une troisième classe intermédiaire représentant les patients en voie de développer une démence.

Références

[1] Daniel S Marcus et al. Open access series of imaging studies: longitudinal mri data in nondemented and demented older adults. *Journal of cognitive neuroscience*, 22(12):2677–2684.